3.344 \(\int \frac{x^3}{(d+e x)^2 \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=160 \[ \frac{d^3 \sqrt{a+c x^2}}{e^2 (d+e x) \left (a e^2+c d^2\right )}-\frac{d^2 \left (3 a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^3 \left (a e^2+c d^2\right )^{3/2}}-\frac{2 d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} e^3}+\frac{\sqrt{a+c x^2}}{c e^2} \]

[Out]

Sqrt[a + c*x^2]/(c*e^2) + (d^3*Sqrt[a + c*x^2])/(e^2*(c*d^2 + a*e^2)*(d + e*x)) - (2*d*ArcTanh[(Sqrt[c]*x)/Sqr
t[a + c*x^2]])/(Sqrt[c]*e^3) - (d^2*(2*c*d^2 + 3*a*e^2)*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*
x^2])])/(e^3*(c*d^2 + a*e^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.326939, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {1651, 1654, 844, 217, 206, 725} \[ \frac{d^3 \sqrt{a+c x^2}}{e^2 (d+e x) \left (a e^2+c d^2\right )}-\frac{d^2 \left (3 a e^2+2 c d^2\right ) \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{e^3 \left (a e^2+c d^2\right )^{3/2}}-\frac{2 d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} e^3}+\frac{\sqrt{a+c x^2}}{c e^2} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

Sqrt[a + c*x^2]/(c*e^2) + (d^3*Sqrt[a + c*x^2])/(e^2*(c*d^2 + a*e^2)*(d + e*x)) - (2*d*ArcTanh[(Sqrt[c]*x)/Sqr
t[a + c*x^2]])/(Sqrt[c]*e^3) - (d^2*(2*c*d^2 + 3*a*e^2)*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*
x^2])])/(e^3*(c*d^2 + a*e^2)^(3/2))

Rule 1651

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, d
 + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1
)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(m
+ 1)*(c*d^2 + a*e^2)*Q + c*d*R*(m + 1) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, c, d, e, p}, x] && Po
lyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1]

Rule 1654

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + c*x^2)^(p + 1))/(c*e^(q - 1)*(m + q + 2*p + 1)), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - c*d^2*(m + q + 2*p + 1) - 2*c*d*e*(
m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq
, x] && NeQ[c*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && True) &&  !(IGtQ[m, 0] && RationalQ[a, c, d, e] && (IntegerQ[
p] || ILtQ[p + 1/2, 0]))

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x^3}{(d+e x)^2 \sqrt{a+c x^2}} \, dx &=\frac{d^3 \sqrt{a+c x^2}}{e^2 \left (c d^2+a e^2\right ) (d+e x)}-\frac{\int \frac{-\frac{a d^2}{e}+d \left (a+\frac{c d^2}{e^2}\right ) x-\frac{\left (c d^2+a e^2\right ) x^2}{e}}{(d+e x) \sqrt{a+c x^2}} \, dx}{c d^2+a e^2}\\ &=\frac{\sqrt{a+c x^2}}{c e^2}+\frac{d^3 \sqrt{a+c x^2}}{e^2 \left (c d^2+a e^2\right ) (d+e x)}-\frac{\int \frac{-a c d^2 e+2 c d \left (c d^2+a e^2\right ) x}{(d+e x) \sqrt{a+c x^2}} \, dx}{c e^2 \left (c d^2+a e^2\right )}\\ &=\frac{\sqrt{a+c x^2}}{c e^2}+\frac{d^3 \sqrt{a+c x^2}}{e^2 \left (c d^2+a e^2\right ) (d+e x)}-\frac{(2 d) \int \frac{1}{\sqrt{a+c x^2}} \, dx}{e^3}+\frac{\left (d^2 \left (2 c d^2+3 a e^2\right )\right ) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx}{e^3 \left (c d^2+a e^2\right )}\\ &=\frac{\sqrt{a+c x^2}}{c e^2}+\frac{d^3 \sqrt{a+c x^2}}{e^2 \left (c d^2+a e^2\right ) (d+e x)}-\frac{(2 d) \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{e^3}-\frac{\left (d^2 \left (2 c d^2+3 a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )}{e^3 \left (c d^2+a e^2\right )}\\ &=\frac{\sqrt{a+c x^2}}{c e^2}+\frac{d^3 \sqrt{a+c x^2}}{e^2 \left (c d^2+a e^2\right ) (d+e x)}-\frac{2 d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} e^3}-\frac{d^2 \left (2 c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{e^3 \left (c d^2+a e^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.317033, size = 184, normalized size = 1.15 \[ \frac{e \sqrt{a+c x^2} \left (\frac{d^3}{(d+e x) \left (a e^2+c d^2\right )}+\frac{1}{c}\right )-\frac{d^2 \left (3 a e^2+2 c d^2\right ) \log \left (\sqrt{a+c x^2} \sqrt{a e^2+c d^2}+a e-c d x\right )}{\left (a e^2+c d^2\right )^{3/2}}+\frac{d^2 \left (3 a e^2+2 c d^2\right ) \log (d+e x)}{\left (a e^2+c d^2\right )^{3/2}}-\frac{2 d \log \left (\sqrt{c} \sqrt{a+c x^2}+c x\right )}{\sqrt{c}}}{e^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(e*Sqrt[a + c*x^2]*(c^(-1) + d^3/((c*d^2 + a*e^2)*(d + e*x))) + (d^2*(2*c*d^2 + 3*a*e^2)*Log[d + e*x])/(c*d^2
+ a*e^2)^(3/2) - (2*d*Log[c*x + Sqrt[c]*Sqrt[a + c*x^2]])/Sqrt[c] - (d^2*(2*c*d^2 + 3*a*e^2)*Log[a*e - c*d*x +
 Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2]])/(c*d^2 + a*e^2)^(3/2))/e^3

________________________________________________________________________________________

Maple [B]  time = 0.247, size = 386, normalized size = 2.4 \begin{align*}{\frac{1}{c{e}^{2}}\sqrt{c{x}^{2}+a}}-2\,{\frac{d\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+a} \right ) }{{e}^{3}\sqrt{c}}}-3\,{\frac{{d}^{2}}{{e}^{4}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}+{\frac{{d}^{3}}{{e}^{3} \left ( a{e}^{2}+c{d}^{2} \right ) }\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \left ({\frac{d}{e}}+x \right ) ^{-1}}+{\frac{c{d}^{4}}{{e}^{4} \left ( a{e}^{2}+c{d}^{2} \right ) }\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(e*x+d)^2/(c*x^2+a)^(1/2),x)

[Out]

(c*x^2+a)^(1/2)/c/e^2-2/e^3*d*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)-3/e^4*d^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*
(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^
(1/2))/(d/e+x))+d^3/e^3/(a*e^2+c*d^2)/(d/e+x)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2)+d^4/e^4*c/
(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((
d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 51.1241, size = 2989, normalized size = 18.68 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(2*(c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x)*sqrt(c)*log(-2*c*x
^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + (2*c^2*d^5 + 3*a*c*d^3*e^2 + (2*c^2*d^4*e + 3*a*c*d^2*e^3)*x)*sqrt(c*d
^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x
- a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(2*c^2*d^5*e + 3*a*c*d^3*e^3 + a^2*d*e^5 + (c^2*d^4*e^2
 + 2*a*c*d^2*e^4 + a^2*e^6)*x)*sqrt(c*x^2 + a))/(c^3*d^5*e^3 + 2*a*c^2*d^3*e^5 + a^2*c*d*e^7 + (c^3*d^4*e^4 +
2*a*c^2*d^2*e^6 + a^2*c*e^8)*x), -((2*c^2*d^5 + 3*a*c*d^3*e^2 + (2*c^2*d^4*e + 3*a*c*d^2*e^3)*x)*sqrt(-c*d^2 -
 a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2
)) - (c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x)*sqrt(c)*log(-2*c*x^2
+ 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) - (2*c^2*d^5*e + 3*a*c*d^3*e^3 + a^2*d*e^5 + (c^2*d^4*e^2 + 2*a*c*d^2*e^4 +
 a^2*e^6)*x)*sqrt(c*x^2 + a))/(c^3*d^5*e^3 + 2*a*c^2*d^3*e^5 + a^2*c*d*e^7 + (c^3*d^4*e^4 + 2*a*c^2*d^2*e^6 +
a^2*c*e^8)*x), 1/2*(4*(c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x)*sqrt
(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) + (2*c^2*d^5 + 3*a*c*d^3*e^2 + (2*c^2*d^4*e + 3*a*c*d^2*e^3)*x)*sqrt(c
*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*
x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(2*c^2*d^5*e + 3*a*c*d^3*e^3 + a^2*d*e^5 + (c^2*d^4*e
^2 + 2*a*c*d^2*e^4 + a^2*e^6)*x)*sqrt(c*x^2 + a))/(c^3*d^5*e^3 + 2*a*c^2*d^3*e^5 + a^2*c*d*e^7 + (c^3*d^4*e^4
+ 2*a*c^2*d^2*e^6 + a^2*c*e^8)*x), -((2*c^2*d^5 + 3*a*c*d^3*e^2 + (2*c^2*d^4*e + 3*a*c*d^2*e^3)*x)*sqrt(-c*d^2
 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x
^2)) - 2*(c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x)*sqrt(-c)*arctan(s
qrt(-c)*x/sqrt(c*x^2 + a)) - (2*c^2*d^5*e + 3*a*c*d^3*e^3 + a^2*d*e^5 + (c^2*d^4*e^2 + 2*a*c*d^2*e^4 + a^2*e^6
)*x)*sqrt(c*x^2 + a))/(c^3*d^5*e^3 + 2*a*c^2*d^3*e^5 + a^2*c*d*e^7 + (c^3*d^4*e^4 + 2*a*c^2*d^2*e^6 + a^2*c*e^
8)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{a + c x^{2}} \left (d + e x\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(e*x+d)**2/(c*x**2+a)**(1/2),x)

[Out]

Integral(x**3/(sqrt(a + c*x**2)*(d + e*x)**2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Timed out